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ABSTRACT  
As intelligent systems are increasingly capable of performing their tasks without the need for continuous 
human input, direction, or supervision, new human-machine interaction concepts are needed. A promising 
approach to this end is human-agent teaming, which envisions a novel interaction form where humans and 
machines behave as equal team partners. This paper presents an overview of the current state of the art in 
human-agent teaming, including the analysis of human-agent teams on five dimensions; a framework 
describing important teaming functionalities; a technical architecture, called SAIL, supporting social human-
agent teaming through the modular implementation of the human-agent teaming functionalities; a technical 
implementation of the architecture; and a proof-of-concept prototype created with the framework and 
architecture. We conclude this paper with a reflection on where we stand and a glance into the future showing 
the way forward. 

1.0 INTRODUCTION 

Recent developments in Artificial Intelligence (AI) technology, computational processing power, and the 
availability of data have given rise to increasingly intelligent systems, i.e. entities capable of engaging in 
dynamic and goal-directed interaction with their environment [48]. Intelligent systems are often described in 
terms of their behaviour and capabilities: intelligent systems can sense their environment, reason about their 
observations and goals in order to make decisions, and act upon their environment [62]. Due to their processing 
speed and their vast and almost infallible memory, intelligent systems outperform humans in handling large 
amounts of (heterogeneous) data, dealing with complex problems, and rapid decision-making [59]. 

A more recent development is that, for certain tasks, intelligent systems are capable of operating at high 
performance levels for extended periods of time without the constant need of human support, guidance, or 
intervention [55][4][36][41]. Concerns about the proliferation of intelligent systems in defence, healthcare, 
aviation, and other high-risk domains - the military domain being one of the most prominent domains under 
debate [32][8] - has ignited heated debates around the globe [48], [49], [6], [14].  

Central to these debates about intelligent systems is the term ‘meaningful human control’ [19][1][3][32]: How 
can intelligent systems be developed in such a way that humans remain in control of the behaviour and effects 
of said systems. Ultimately, such control is necessary to allow for human responsibility and accountability for 
potential outcomes of the deployment of intelligent systems. 

One way of approaching the realization of meaningful human control is human-agent teaming (HAT). HAT 
aims to fully benefit from a system’s autonomous capabilities while still maintaining meaningful human 
control. This is accomplished by endowing an intelligent system with a variety of team behaviours, making 
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the system anticipatory, sensitive, and responsive to the needs, wishes, intentions, control, and/or influence of 
other team members. Examples are: pro-actively sharing bits of information to maintain a minimally required 
extent of shared situation awareness; being (re-)directable at a higher level of abstraction (e.g. strategic or 
tactical); anticipating (human) team members’ actions; or foreseeing potential problems, sending human 
teammates timely warnings, and asking them for assistance. Most common architectures for autonomous 
systems (such as 4D/RCS [1]) ignore teaming functionalities and place the focus on task-oriented Artificial 
Intelligence (TAI), such as planning and sensing. The purpose of this paper is to describe a method for 
pluggable Social Artificial Intelligence (SAI) which allows developers to complement an existing autonomous 
(TAI) system with the capability to team up with humans. 

The framework, called SAIL (Social Artificial Intelligence Layer) can be added to an autonomous system any 
time during commissioning or, at a later stage, while the system is in use. SAIL provides an infrastructure and 
a library of common HAT behaviours, promoting reusability, problem decomposition, and adaptability. This 
paper discusses the application of SAIL from functional analysis to functional design, to system architecture 
design to technical implementation. 

We start our discussion in Section 2 on functional analysis by distinguishing five dimensions that can be used 
to characterize a Human-Agent Team, such as spatial dispersion of the team members, time criticality, and 
communication characteristics. Using three illustrative examples from the defence domain (mine hunting, 
aerial surveillance, and robot-assisted house search), we will demonstrate the application of the framework. 
These scenarios impose different requirements on a HAT and illustrate the scope of the problem space 
representing military HAT applications. 

We have extracted a number of common high-level functions needed to enable team collaboration between 
humans and autonomous systems. These functions form the main HAT-functions provided by SAIL. For 
example, we identify a proactive communication function that decides whether a particular piece of 
information is relevant for a human given the current task context, user state, and system capabilities. Another 
common function within HAT is an explainable AI function that allows an autonomous system to explain why 
it has chosen a certain course of action and select useful explanations to offer to its human user to increase its 
predictability. Seven common HAT functions are described in Section 3. 

The HAT functions are realized in the SAIL software architecture in a modular way using dedicated SAI-
components which can be plugged into the autonomous system. Communication between these components 
is facilitated by our newly developed Human-Agent Teaming Communication Language (HATCL). This 
language provides the constructs needed for all components (i.e. TAI, SAI, and human) to coordinate actions 
among one another, ultimately leading to a coherent team consisting of humans and autonomous (TAI) systems 
glued together by SAI components. Of particular concern is to enable a mapping from the concepts in the 
internal control logic in the autonomous system to HATCL and back. This is realized in SAIL by so-called 
semantic anchors. A description of the SAIL architecture, HATCL and semantic anchors is provided in Section 
4. 

Using the SAIL framework, we have implemented a prototype application in which a swarm of military 
surveillance drones running in the Gazebo simulation environment can be controlled in a meaningful way 
using HAT techniques. The prototype is described in Section 5. 

Section 6 presents a conclusion and future activities.  

2.0 ANALYSING HAT SCENARIOS IN VARIOUS DIMENSIONS 

Teamwork and collaboration requires interaction and tuning, especially in a HAT. What type of interaction, 
coordination, and alignment is needed, strongly depends on the type of HAT and the context in which it 
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operates. Therefore, we have identified five important dimensions that describe and define a specific HAT, 
and that can be used as a guidance when determining specific requirements for a given HAT. 

2.1 HAT dimensions 
We describe a set of five dimensions that affect the requirements of a specific HAT: environment, mission/task, 
team organization, team dynamics, and communication (Figure 2-1 provides an overview). The dimensions 
can be used in multiple ways: to evaluate the generic applicability of HAT solutions for a wide variety of tasks, 
teams, contexts, and situations; to support rapid prototyping and analysis of specific HAT cases and identify 
challenges and requirements; or to compare multiple scenarios or cases to one another in terms of complexity 
and/or required SAI functionality. 

2.1.1 Environment 

The environment dimension describes which part of the environment is (a) dynamic, as opposed to static, and 
(b) predictable, and to what extent. This dimension affects, among others, HAT requirements aimed at the 
establishment of (shared) situation awareness (SA). Situation Awareness is “the perception of the elements in 
the environment within a volume of time and space, the comprehension of their meaning, and the projection 
of their status in the near future” [20]. In teams, SA needs to be distributed optimally across team members. 
Acquiring and maintaining shared SA becomes increasingly difficult as the environment becomes more 
dynamic and unpredictable [21]. Furthermore, complex environments also make it more challenging to 
determine when or in which manner the autonomous system may reach the boundaries of its capability 
envelope [57], posing additional challenges for the human to quickly switch to manual control if needed. 

2.1.2 Mission / task 

The mission / task dimension describes four factors. First of all, the (a) duration of the work cycles - which 
can be short, long, repeated, continuous, or team lifespan [54] - affects training and evaluation requirements. 
For instance, when teams collaborate for brief durations, extensive training and / or preparation may be 
needed because there is little time for tuning or adjustments during actual task performance. Secondly, the 
(b) interdependency of the team (e.g. [47]) can affect the need for interpredictability (also see Section 3.2)  
and shared mental models of team members’ capabilities and status as members depend on each other’s 
performance and actions. The other two factors of the mission / task dimension are (c) time criticality, 
affecting communication requirements, and (d) risk. From a social perspective, increased risk may require 
artificial teammates to be more aware of human team members’ emotional status, which can potentially 
affect task performance. 

2.1.3 Team organization 

The team organization dimension describes (a) the team's physical proximity, (b) the number of team members, 
(c) the team’s adaptability [47], and (d) their skill and authority differentiation (e.g., the extent to which the 
team members have different specialisms and ranks, [54]) and (e) network structure. Different organizational 
set-ups require different behaviour from teammates. For instance, we know from the human-human teaming 
literature that in distributed teams, team trust is an important mediator of success, and can be increased through 
effective knowledge sharing and exchange behaviours [24][58]. Proactive communication in HATs, a 
requirement we elaborate on later, contributes to this. The team adaptability factor is described as the ability 
to alter a course of action or team repertoire in response to changing conditions and is thus especially important 
in dynamic and / or unpredictable environments. 

2.1.4 Team dynamics 

The team dynamics dimension contains (a) the temporal scope - a team may be standing, ad-hoc, to be formed 
in the future or having ceased to exist [54]. The team’s temporal scope may have implications for the extent 
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to which teams are capable of forming longitudinal reciprocal and personalized team relationships. For 
example, in ad-hoc teams, the artificial teammate may have little or no time to develop a user model, and needs 
to be able to quickly identify roles, capabilities, and responsibilities. This is related to human-awareness, a 
requirement we elaborate on later in Section 3. The second aspect of the team dynamics dimension is (b) the 
team’s current development phase - which cycles trough commissioning, preparation, action, and debriefing / 
learning. The development phase of the team, and especially the extent to which they actively cycle through 
these phases, may affect the extent to which teams engage in after action review and reflection to incrementally 
improve their processes and procedures. For instance, teams that cycle through preparation, action and learning 
phases may benefit from the ability to make work agreements among the team members, e.g. about constraints 
imposed on artificial agents, a functionality that we have implemented a solution for in SAIL (see Sections 3 
and 4). 

2.1.5 Communication 

The communication dimension describes (a) the communication streams, which may vary between many-to-
many, one-to-many, or one-to-one, (b) the information richness in communication [12], and (c) the quality of 
the infrastructure, which may vary in reliability, bandwidth, and range. During the design phase of a HAT, the 
communication dimension needs to be taken into account in order to optimize how, for instance, (shared) SA 
will be maintained [50]. For instance, when working in an unreliable network, relevant information needs to 
be pushed whenever possible, whereas with a reliable network, the artificial teammate may take other 
teammates’ workload into account when timing communication. Furthermore, reduced communication 
abilities may increase the need to extensive training and clear work agreements so that teammates know what 
to expect from one another during periods of limited communication. 
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Figure 2-1 Overview of the HAT dimensions, and the way each of the scenarios maps onto these 
factors. Scenarios are indicated by colour-coding (yellow, green, and purple). 

2.2 Example scenarios illustrating the dimensions 
To illustrate the five dimensions presented in the above, we will discuss and analyse three typical defence 
scenarios. Figure 2-1 provides a visual overview comparing each of the scenarios with respect to the various 
team characteristics. 

2.2.1 Surveillance scenario 

In the Surveillance scenario, a swarm of unmanned aerial vehicles (UAVs) collaborates with a base 
commander to conduct a surveillance task around a small, temporary military base. The team has a low 
physical proximity, meaning that it requires the ability to efficiently exchange (shared) situation awareness. 
Differentiation of skill among the UAVs is low, allowing for quick back-up behaviour within the team. 
Furthermore, as the task concerns mainly surveillance, differentiation of authority between UAVs and the base 
commander is relatively low. In normal conditions, the UAVs can autonomously select sensors; plan and 
coordinate their flight paths; and choose what information to send to the base commander. However, when 
anomalies are detected or when the UAVs are unable to cope with a situation autonomously, the base 
commander quickly needs to (re)gain SA and decide on subsequent actions. This poses interesting 
requirements to the HAT: in normal conditions the marine officer has a low workload and SA, but in case of 
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potential (often time critical) anomalies or unexpected situations he or she needs to be able to effectively 
transfer from ‘out-of-the-loop’ to ‘in-the-loop’ as quickly as possible (i.e. management by exception). 

2.2.2 House search scenario 

In the House search scenario, a single soldier teams up with a single unmanned ground vehicle (UGV) to 
perform a house search. Short work cycles are used as multiple houses may be searched subsequently. This 
means that there is room for (longitudinal) team development as the team repeatedly cycles from preparation 
to action and evaluation. Furthermore, the team has high internal, but usually low external dependency. The 
high internal dependency means that consistent behaviour, potentially enforced trough work agreements, and 
trust calibration are important. For instance, under what circumstances does the UGV perform below average 
in terms of situation assessment? And when trust is damaged, how can the artificial teammate repair it (e.g. 
[57][46][58])? The risk is high while time pressure is average, this means that it is probably most effective to 
proactively provide updates and request confirmation regularly while still considering the other teammate’s 
current mental state. The house search team often needs to jump right into action and the environment is highly 
unpredictable, dynamic, and variable. This means that the team needs to be highly trained so that the team 
members work together seamlessly, even when they have little time to prepare for action while facing 
unpredictable situations. 

2.2.3 Mine hunting scenario 

In the Mine hunting scenario, personnel on a naval mine hunter teams up with a swarm of unmanned 
underwater vehicles (UUVs) to search for and dismantle sea mines. In this scenario, ample time is available 
for commissioning and preparation as there is usually relatively little time pressure. However, the availability 
of communication infrastructure during action is restricted due to limitations of underwater communication. 
This means that common ground is essential and work agreements are required that take unexpected situations 
into account, since agents may need to solve problems without being able to communicate. The mine hunting 
case is a typical example of a predictable, static environment with a team that is long-standing. 

2.2.4 Applicability to other cases 

The dimensions discussed above can also be used to describe and analyse other examples of military HAT. 
For instance, the goal keeper used to defend navy ships against incoming missiles is characterized by repeated 
work cycles with extreme time pressure and high risk. The wide range of potential HAT applications, 
situations, and settings makes it clear that HAT functions and solutions that aim to be generic need to be 
flexible, adaptable, and expandable. Together, SAIL and HATCL provide a platform to facilitate this. For the 
remainder of the paper, the surveillance scenario will be used as an illustrative running example. 

2.2.5 Added value of HAT analysis 

The HAT analysis can be used in many ways: to evaluate whether concept HAT solutions are as generic as 
imagined; to analyse specific HAT situations or cases and identify which capabilities are required for the 
artificial teammate; or to compare a set of scenarios or cases. In our experience, analysing cases, scenarios, 
and HAT solutions in this way can be very helpful in designing better human-agent interaction. Furthermore, 
it helped identifying the most common HAT functions, which we discuss in the next section. 

3.0 COMMON HAT FUNCTIONS 

This section describes the most common functions of agents participating in Human-Agent Teams. Our 
starting point are the three basic requirements for effective coordination [22][36]:  
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• Common ground: Team members must have shared beliefs about the world state, the goals, the 
conventions associated with the task at hand, etc. 

• Interpredictability: team members must be capable of predicting each other’s actions with a 
reasonable degree of accuracy. 

• Directability: Team members must be capable of redirecting each other’s behaviour. 

By creating functionalities and behaviour capabilities for artificial team members that support each of these 
requirements, artificial agents can contribute to team processes in service of optimizing team performance. 
The following subsections offer insight in the way this can be achieved. 

3.1 Common ground 
In order for communication to be accurate and effective, participants in a conversation must establish proper 
common ground. Common ground refers to information which is mutually believed by all parties involved in 
a conversation [27]. Conversational efficiency is greatly enhanced through common ground as speakers need 
not explain all assumptions underlying their statements. Yet conversely, conversational effectiveness is greatly 
limited when speakers assume common ground, where it is lacking. Relying as a speaker on common ground 
with the audience is an invitation to cooperate [27] as the speaker appeals to the audience "to base their 
inferences not on just any knowledge or beliefs they may have, but only on the mutual knowledge or beliefs 
[shared by the conversational participants]" [10]. 

According to Stalnaker (2002), common ground relies on the speaker’s presuppositions about the audience’s 
common beliefs [53]. The common beliefs of the parties to a conversation are the beliefs they share, and that 
they recognize they share. By presupposing certain beliefs, the speaker takes the audience’s understanding of 
such beliefs for granted as background information. By identifying the common ground of a conversation with 
the common belief of the participants, the presuppositions of an individual speaker can be identified with what 
the speaker believes to be common belief. 

For HATs to establish and maintain common ground and thereby speed up the communication process, the 
following functionalities can be introduced in artificial team members. 

3.1.1 Shared situation awareness 

An important challenge in developing HATs is to endow artificial team members with functionalities allowing 
them to effectively and efficiently share situation awareness (SA) within the team [19]. SA primarily refers to 
knowledge about the current state of the task environment, as well as team activities, team performance, and 
overall progression with respect to the team task. Such knowledge facilitates coordination and reallocation of 
tasks within the team, but can also be used for effective and efficient communication among the team members. 
SA can be used to explain dynamic goal selection, attention to appropriate critical cues, and future state 
predictions, but this requires for the parties involved to have access to the information needed to assess –and, 
through that, become aware of– the situation. Establishing shared situation awareness, then, means for team 
members to reason about the necessity of sharing certain information with the other members in the team, to 
develop a shared team “theory of the situation” [8]. To realize this, team members should decide to share 
relevant information, while withholding irrelevant information, so as to prevent their team members from 
becoming overloaded with information [46]. Deciding on the necessity of information for the other team 
members, requires an additional type of awareness, dubbed “intention awareness” by Howard and Cambria 
(2013), by which they mean “the process of integrating actors’ intentions into a unified view of the surrounding 
environment” [31]. Intention awareness can also be used to reason about potential adversaries and other actors  
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3.1.2 Explanations 

At times throughout a conversation, team members may fail to understand one another’s actions or utterances. 
On such occasions, team members may require for additional explanations to gain understanding of the other 
team member’s meaning, motivation, intention, or assumption. When creating artificial team members, 
developing functionalities enabling them to explain their behaviour, recommendation, or expression is often 
referred to as “explainable artificial intelligence (XAI)”. XAI facilitates the disclosure of information by 
artificial team members to human team members. Compared to the sharing of situation awareness, XAI 
typically concerns more advanced functionalities, as it requires for the intelligent system to trace its internal 
line of reasoning, inference, classification, or input-output mapping, depending on the type of technology used. 
When done appropriately, XAI helps human team members understand the system’s rationale underlying its 
behaviour and/or decisions. For example, an analyst who receives recommendations from a smart decision 
support system needs to understand why the algorithm has recommended a certain course of action. 

As of recent, the research area of explainable AI (XAI) has exploded (e.g. [28]). In addition to the ability to 
offer a meaningful explanation for a specific human actor when needed, XAI also refers to the ability to ask 
for an interpretable explanation from a specific human actor when needed. So far, research centred primarily 
on the first type of ability. However, more integrative methods are under development, including bottom-up 
data-driven (perceptual) processes and top-down model-based (cognitive) processes [42]. Such methods could 
help assess the trustworthiness of the autonomous system’s task performance and, subsequently, explain the 
foundation and reasons of this performance to establish trust calibration [58]. 

3.2  Interpredictability 
Smooth collaboration can be enhanced by team members anticipating the interdependencies within the team. 
By predicting team members’ task performance, team members can shorten waiting times, expedite task 
performance by aiding a team member in need of assistance, provide important just-in-time information to 
those who need it, and plan for contingencies if a team member may be unavailable or incapable of performing 
a task. To enhance interpredictability between team members, endowing an artificial team member with the 
following functionalities can be useful. 

3.2.1 HAT training and longitudinal teaming 

Team performance requires coordination between activities of each of the team members, under routine 
conditions as well as under novel conditions. Procedures, protocols, and doctrines are all artefacts created to 
foster team performance, as they increase interpredictability and support coordination. Procedural team 
training therefore focuses on the internalisation of procedures. However, procedures are often insufficient 
when the actual task deviates from the training task. On such occasions, teams have to improvise new ways of 
working together. One way of dealing with this challenge, is through team cross-training: team members 
switch roles with one another, so as to understand one another’s roles and responsibilities [10]. Nikolaidis et 
al. (2015) investigated the use of cross-training in human-robot teams for assembly in the manufacturing 
process [43]. By iteratively switching roles between the robot and the human worker, the robot learned a model 
of human behaviour, describing the sequence of actions necessary for task completion and matching the 
preferences of the human worker. 

Team training (both procedural and cross-training) aims to support the development of shared mental models: 
an overlapping understanding of one another’s objectives, roles, tasks, activities, whereabouts, team structure, 
and so on [63]. Shared mental models enable team members to reason not only about their own situation, but 
also about that of their team members in the pursuit of their joint goal. Shared mental models, in other words, 
enable team members to predict a team member’s performance on a particular task, potential need for help or 
information, risks of failure within the team, etc.  
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HAT training supports the development of shared mental models, by learning about one another’s capabilities 
and limitations through experience, and optimizing the team processes needed to mitigate risks and limitations 
within the team. By endowing artificial team members with the functionalities required to engage in HAT 
training, artificial team members can learn to optimize their behaviour with respect to a team, i.e. the 
constellation of specific team members and their particular dynamics. In other words, team training facilitates 
the development of increasingly accurate mental models of team members, with the objective of increasing 
the team’s ability to flexibly coordinate their activities and increase team performance. This, however, requires 
for artificial team members to be able to learn from team interactions, updating their models to better interpret 
the tasks, behaviour, and corresponding needs of their team members. This is also referred to in the literature 
as “interactive shaping” [38][43]. For example, Nikolaidis et al. (2015) found that cross-training improved 
mental model similarity, as well as the human worker’s perceived robot performance and trust in the robot. 

3.2.2 Proactive communication 

Teamwork often entails the processing, interpretation, and analysis of large amounts of information. Based on 
their roles and/or expertise, responsibility for handling certain information sources and types is distributed 
across the various team members. Oftentimes, the results of the information processed by one of the team 
members are relevant to the activities of another team member, requiring the team members to communicate 
with one another. Communication in teams often aims to contribute to one of the following: (1) problem-
solving, (2) structuring and coordination, (3) socio-emotional alignment, or (4) proactive communication [33]. 

An important challenge in teams is how team members decide to proactively communicate: when should an 
actor communicate what with whom. Such decisions are often based on shared mental models [63]. 
Interpredictability (facilitated by mental models) enables an agent to infer that its team member is currently 
working on a task that requires certain information, or that newly retrieved information affects the decisions 
and tasks of a team member. Based on such reasoning, the agent may decide to proactively share its knowledge 
with the respective team mate. Proactive communication entails team members providing one another with 
information on their own accord, i.e. without the need for a team member to explicitly request for that 
information to be shared. We distinguish between proactive communication to accommodate a team member’s 
information need based on: (1) that team member’s preferences (e.g. as learned from prior information 
requests), (2) knowledge about that team member’s situation (i.e. based on a shared mental model), and (3) 
one’s own potential need for assistance in the near future, requiring the envisioned assistant to be up to date 
with the situation at hand. There might be additional reasons and situations where proactive communication 
advances team performance, that we currently haven’t thought of yet. 

For an artificial agent to be able to reason about its human team members, requires for that agent to be human-
aware. Human-awareness entails that intelligent actor(s) have access to information about human team 
members and their characteristics (e.g. preferences, tasks, capabilities and limitations, etc.). In addition to this 
information, the agent(s) also employ various functionalities aiding the maintenance of, reasoning about, and 
learning from such information. For example, functionalities related to human-aware computing include 
location monitoring, attention tracking, and trust calibration. Ultimately, human-awareness enables intelligent 
systems to predict the behaviour of human team members, fostering better shared mental models and 
interpredictability. 

3.3 Directability 
Directability entails the ability of team members to influence and/or control one another’s behaviour, to 
accommodate adaptations in the team’s activities, coordination, behaviour, and overall performance. 
Traditionally, in human-robot collaboration, directability entailed tasking of a robot by a human operator. 
However, as robots (and agents) become more capable of determining their own plans and activities to try and 
accomplish the team goals, human-robot collaboration gradually moves away from traditional tasking, and 
towards e.g. dynamic task allocation, shared initiative, and work agreements. 
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3.3.1 HAT communication 

Being able to influence the behaviour of another actor first requires for the team members to be able to express 
themselves about more than simple information sharing, as was the case for common ground and 
interpredictability. We therefore need to extend communication to include speech acts that express the desire 
for another agent to perform a certain activity. In most agent communication languages, these speech acts are 
derived from “request” and “query” [23]. The request speech act asks another agent to perform a certain task 
or action, whereas the query speech act asks another agent to provide particular information. We will go deeper 
into the use of speech acts in the next section. 

3.3.2 Work agreements 

Work agreements are used to impose constraints on the autonomous behaviour of agents [16]. This forms one 
of the core building blocks of human-agent teams as they enable external directability on an agent’s behaviour 
without compromising the agent’s autonomy (also known as internal autonomy requirement [18][56]). 
Furthermore, they contribute to maintaining common ground and interpredictability, by enabling an explicit 
way to specify shared conventions on the agent’s behaviour. 

Work agreements are very similar to policies which have been applied as a teamwork coordination mechanism 
in [8]. We distinguish between two types of work agreements: obligations which describe which actions must 
be performed by an agent in a given context; prohibitions which describe which actions are not permitted to 
be performed by an agent in a given context. Examples of work agreements are 

- UGV 2 has an obligation to notify the human worker when it detects a potentially hostile target 

- UAV 3 has a prohibition to fly above the village 

Work agreements can be applied for various purposes on different time scales. For example, one might specify 
a work agreement that specifies the current plan that is followed by the human and agent. On a longer timescale, 
a work agreement can be used to specify the Rules of Engagement which the system has to adhere to, or even 
military doctrine which lasts for the entire lifecycle of the system. 

Work agreements can also be applied when designing the teamwork process itself by stating which 
communicative acts must be performed under which circumstances. For example, to specify the task division 
between the human and the agent, or to specify the level of human involvement in the process. 

A more detailed (technical) description of work agreements is provided in the next section. 

3.3.3 Dynamic task allocation and fit-for-purpose collaboration 

As artificial team mates become more self-sufficient, it is at times unnecessary for a human to control, or even 
monitor, artificial agents at all times. The challenge is, however, that most artificial agents are capable of 
performing their task without the need for assistance or control under specific circumstances, whereas at other 
times, their performance degrades, or they malfunction altogether. As a result, the human-agent collaborative 
work relationship may vary across situations. To deal with this phenomenon, the team should be able to engage 
in dynamic task allocation and fit-for-purpose collaboration [25]. For example, the team should be able to shift 
between the following work relationships depending on the situation at hand: 

• Parallel task performance: team members perform their tasks in coordination with their team 
members. They are capable of identifying, organising, and performing their own tasks and 
responsibilities without the need for assistance. 
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• Management by exception: team members can perform independently, yet when help or directions 
are required, they either ask for help from their supervisors or colleagues, or their team members 
notice a break-down and offer help proactively. 

• Training / educating: team members are still in training and require constant feedback and monitoring 
so as to strengthen their understanding of the team task or goal, their team members, the roles within 
the team, and their own activities as part of the entire team performance. 

• Tasking: team members are capable of performing a task once it is provided to them, but are incapable 
of determining their next task, as they are unaware of the encompassing team task or goal, their 
surroundings, role within the team, and/or team members. 

4.0 SYSTEM ARCHITECTURE DESIGN FOR HUMAN-AGENT TEAMING  

This section describes a functional architecture, called SAIL, in which the common HAT functions can be 
combined and configured to turn a set of autonomous agents and humans into a coherently working team. The 
next subsection describes the SAIL architecture  

4.1 Social Artificial Intelligence Layer 
SAIL (Social Artificial Intelligence Layer) is an environment in which HAT functionalities can be 
implemented in a modular way, i.e. using HAT modules. We distinguish between three types of components 
in a SAIL system:  

- Humans in their ambient environment. For example, these may be professionals working in crisis 
management wearing mobile interaction devices such as smart watches and head-mounted displays 
supporting augmented reality; or these may be operators working in a control station with large 
information displays. 

- TAI (task-oriented AI) components, i.e. technical AI components designed to optimally perform a 
certain task, but which may not be optimized for human interaction. These may be robots conducting 
surveillance in a certain area, cyber agents protecting vital ICT infrastructure against cyber threats, 
etc. 

- SAI (Social AI) modules which serve as intelligent middleware aiming to transform task-oriented AI 
components and humans into a coherent human-agent team. Such components include machine 
learning technology that can decide how to exchange the right information at the right moment among 
the right actors [17], or AI message interpretation that can translate a high level command such as 
“secure the area” into commands that can be processed by the TAI component. 

 
An overview of a SAIL configuration is depicted below. 
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Figure 4-1 SAIL system architecture, where Task-oriented AI components (TAI) are mediated by 
Social AI Components (SAI) to allow interaction with humans. 

Because the different components in SAIL can take on many forms depending on the requirements of the 
system, SAIL does not impose any constraints on their internal workings. The focus of SAIL therefore is on 
the interactions between the different components. These interactions are specified in a dedicated language 
called HATCL (Human-Agent Team Communication Language), which provides an abstract specification 
language of the possible information and control flows between the different components of a HAT. HATCL 
is abstract in the sense that it specifies the information in the message and its illocutionary force [50]. 
Illocutionary force refers to the intention of a speaker behind an utterance, e.g. obtaining information, directing, 
etc. HATCL messages are neutral with respect to interaction modality or graphical representation. A 
specification of the language is described in the next subsection. 

4.2 HATCL 
HATCL is inspired by FIPA-ACL, which has been developed as a language for communication between 
intelligent software agents [23]. To function as an effective means of communication between the different 
components in Figure 4-1, HATCL should satisfy a number of additional requirements which makes it suitable 
for Human-Agent Teaming. 

R1: HATCL should be capable of capturing the different abstraction levels at which machines and 
humans interpret and process information within a certain problem domain.  

HATCL should mediate between the different levels of abstraction of the various SAIL components. In the 
interaction between humans and SAI modules, a HATCL message should be capable of representing the 
information that stems from human input or that is outputted to humans. In other words, the language should 
(at least partly) be understandable by humans. This means that the language should align with human mental 
models [42]. One way to interpret this is to adopt Daniel Dennett’s intentional stance [12]. This theory states 
that humans should comprehend the behaviour of artificial agents by attributing goals, beliefs, and intentions 
to them. The communication of such concepts should be facilitated by the HATCL language. In the interaction 
between TAI and SAI modules, the language should (at least partly) be understandable for machines. 
Therefore, the conceptualization should be alignable with the internal logic of the system. For example, when 
the system is based on internal logic that chooses its actions based on maximizing the expected reward, the 
language should be capable of communicating these concepts to be understandable for the system. 

R2: HATCL should allow for sending soft directives.  
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To implement directability in a team of equal humans and agents, the rule orders are orders does not always 
apply. For example, consider the situation where the human commands an autonomous drone to fly back to 
the command post (CP). Various reasons exist in which the drone’s responsive behaviour might deviate from 
simply following this command: 

• Incapability: The drone might know that it is currently incapable of completing the action due to a 
reason unknown to the human (e.g. low battery level). In this case, we might want the drone to point 
out this problem to the human, rather than trying and failing. 

• Conflicting with team goal: The drone might possess additional situation awareness that the given 
command would lead to an outcome which conflicts with the team goal. For example, that flying back 
to the CP would cause the drone to be subjected to hostile fire, which conflicts with the team goal to 
remain safe. If the drone can think of a better alternative, we might want the drone to propose this 
alternative instead. 

• Dealing with multiple orders: In practical situations, the drone must deal with multiple orders which 
apply to different timescales and may even be in conflict with each other. For example, when the 
drone receives the order to fly to the CP, the drone may have to decide to finish its previous order first 
(e.g. to take a picture of an area of interest) or fly back immediately. Most likely, this depends on the 
time it takes to finish the previous order. In case of uncertainty, we might want the drone to discuss 
this problem with the human. 

As the examples above illustrates, a directive used for communication between autonomous agents is 
fundamentally different than a directive used between objects in object-oriented programming language (e.g. 
remote method invocation). Jennings et al. have famously phrased this as: Objects do it for free, agents do it 
for money [36]. Nevertheless, defining the precise meaning of these soft directives remains a challenge, and is 
one of the major objectives of HATCL specifications. 

R3: HATCL should allow for specifying unambiguous work agreements.  

As argued in Section 3.3.1, work agreements form an essential part of HAT technology. Therefore, the 
specification of these work agreements in an unambiguous way is one of the main purposes of HATCL (also 
see Section 4.2.2). 

R4: HATCL should allow symbol grounding in various system architectures.  

The symbol grounding problem [15] refers to the problem of relating symbolic messages (such as HATCL 
messages) to internal structures that are processed by the agent (such as perceptions and plans). We use 
semantic anchors to formalize this relation. Different system architectures typically require different semantic 
anchors for the same HATCL message. For example, opaque deep learning networks require very different 
types of semantic anchors than rule-based systems. 

To satisfy each of the requirements described above, we define the message structure (syntax) and its semantics 
(in terms of work agreements, ontologies, and semantic anchors). 

4.2.1 The HATCL Message syntax 

A HATCL message has the following structure: <Performative, Sender, Receiver, In-reply-to, Content, 
Protocol, Ontology, Message-ID, Conversation-ID>. Most of these fields, such as Sender, Receiver, Message-
ID, contain meta-information used for routing the message. The fields Performative, Content, and Ontology 
are worthy of further explanation and are discussed below. 

The Performative is used to denote the illocutionary force of a message, which could be:  
• Inform: Provide another actor with information 
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• Query: Ask another actor for information 

• Subscribe: Subscribe to information updates on a specific topic from another actor 

• Request: Ask another actor to perform a certain task (acts as a single purpose work agreement) 

• Propose: Propose a work agreement to another actor 

• Accept: Accept the proposed work agreement 

• Reject: Reject the proposed work agreement 

• Understood: Acknowledge reception, and correct interpretation, of an inform message 

• Not understood: Acknowledge reception, yet misinterpretation, of an inform message 

• Cancel: Cancel a previously instantiated work agreement 

This is the set of performatives currently included in HATCL. New performatives may be added as required 
by future applications. Each of these performatives has been defined both syntactically and semantically in our 
HATCL specification document. 

The content of a message specifies what is actually communicated and can be specified in a query language, 
working agreement language, or assertion language. The content  
 
{ “Performative” :   “Query” ,  
  “Sender” :       “Hum1”,  
  “Receiver” :     “UGV1”,  
  “In-reply-to” :   “”,  
  “Content” :      “$.vehicles.*” 
  “Protocol” :     “”,  
  “Ontology” :     “military_ont”,  
  “Message-ID” :    “msg13”, 
  “Conversation-ID :  “cnv-2” } 
 

4.2.2 Work agreements 

As work agreements between humans and autonomous systems impose well specified constraints on 
autonomous behaviour, they form the core building blocks of HAT technology; many message types in 
HATCL can be interpreted in terms of work agreements. For example, a HATCL message of the type inform 
is translated into the work agreement: <Actor1, Actor2, upon receiving this message, O(send information of 
type x to Actor1)>, which states that by accepting this work agreement, Actor2 commits to an obligation to 
immediately send information of type x to Actor1. 

Scientific research on the formalization of work agreements (also referred to as “social commitments”) comes 
from the field of normative multi-agent systems [40][51]. A work agreement is an explicit agreement between 
two actors, specifying that one actor, denoted as debtor, owes it to another actor, denoted as creditor, to 
effectuate some consequent (e.g., refrain from or see to it that some action is performed or some objective is 
achieved) if the antecedent (e.g., some precondition) is valid [51]. Work agreements, in short, aim to specify 
permissions and obligations on agent behaviours. And so allow for the voluntary restriction of an actor’s 
autonomy as proposed by another actor. Work agreements hold explicitly between two actors. Therefore, work 
agreements are sometimes compared to contracts. An example of a work agreement is: “Lawrence is obligated 
to notify Lisa about his change in intent, if he decides to pause his current task to switch to a more pressing 
task encountered along the way”. 
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A work agreement is first and foremost a voluntary restriction on an actor's autonomy (also see Figure 4-2), as 
the actor receiving the proposed work agreement is also allowed to reject the work agreement. The acceptance 
of the work agreement, and hence the restriction on its autonomy, is completely voluntary. As soon as the 
debtor has accepted the work agreement, though, the debtor's autonomy is conditionally restricted: the debtor 
must satisfy the work agreement once the antecedent becomes valid. If the debtor fails to provide the 
consequent of an activated agreement before the deadline, this implies that the agreement has been violated. If 
the debtor succeeds to do so, the work agreement is satisfied. Furthermore, commitments can, in general, be 
cancelled by the actors involved (although this may be subdue to overarching rules). 

 

 

Figure 4-2: The lifecycle of a work agreement as affected by the dynamics between the actors 
and events taking place in the environment 

A similar approach to work agreements are policies: “enforceable, well-specified constraints on the 
performance of a machine-executable action by a subject in a given situation” [16]. Policies come in two 
flavours: authorization policies, stating what is permitted, and obligation policies, stating what is obligatory in 
a given situation [16]. Policies do not hold between two actors, but instead are generally applicable to a set of 
actors. Therefore, policies are sometimes compared to laws. An example of a policy is: “Team members are 
obligated to notify their team leader about a change in intent if they decide to switch tasks after encountering 
a more pressing task”. 

The foundation of both policies and work agreements are normative rules in the form of deontic logic [59]. 
Deontic logic is used to reason about obligations and permissions. Therefore, deontic logic still forms the core 
of work agreements and policies, as it enables reasoning and verification. 

4.2.3 Ontologies 

Ontologies offer explicit, structured, and semantically rich representations of declarative knowledge. They 
consist of concepts (`classes'), and relations between them, to describe certain parts of the world [45]. HATCL 
uses a domain-independent “top ontology” and a domain-specific ontology to enable actors in the HAT to 
parse the messages they receive. Figure 4-3 shows the top ontology, consisting of relatively generic concepts, 
such as Actor, Plan, Goal, and Action. The domain-specific lower-level ontology would provide specific 
instances of tasks, actors, and plans particular to that domain. 
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Figure 4-3: Top-level domain-independent ontology used to specify work agreements and 
HATCL messages, facilitating coordination and communication between actors in the HAT 

4.2.4 Semantic Anchors 

Semantic anchors relate concepts and variables in HATCL to concepts and variables in the autonomous 
system. This translation operation is implemented inside the autonomous system. To illustrate this important 
principle in human machine teaming, we will start with a simple example.  

Example 1: Suppose we have a human team-member controlling an autonomous system which runs the 
following code: 
Repeat  

turn_left,  
turn_right,  
move_straight  

Until false 

Suppose the human teammember expresses the desire to prohibit left turns via work agreements. Right now, 
the autonomous system code is not suitable for that. Therefore, the developer makes the following code-update: 

Repeat  
If tl_permitted then turn_left,  
turn_right,  
move_straight  

Until false 

Furthermore, a semantic anchor is created that maps the WA (specified in HATCL) to code that can be 
interpreted by the autonomous system: 

prohibited(turn_left) -> tl_permitted=false 

Example 2: Assume now that the autonomous system’s actions do not have the attribute tl_permitted. 
Instead, the system has a variable map indicating the desirability of each position on the ground, which is used 
to determine where to move. In this case, the anchor would access the variable map and set a low desirability 
on the coordinates on the system’s left side. 
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As this example shows, multiple ways exist in which a semantic anchor can be realized. In general, the human 
interfaces work at a higher abstraction level than the internal control logic of the autonomous system. This 
means that semantic anchors whose information flows from the teaming software towards the system perform 
a translation into a lower abstraction level. Whereas the translation into a higher abstraction level occurs when 
the information flow is reversed. Note that this does not need to be the case nor are semantic anchors limited 
to a one direction flow of information. See the figure below for two examples of the functionality of semantic 
anchors. The top anchor simply acts as a gateway between an abstract variable in the teaming software and the 
system, as the abstract meaning is appropriate in both (see the example 1). Whereas the bottom anchor 
performs an actual translate operation and whose information flow is bidirectional (see example 2). Also note 
the presence of the API as a distinct entity. 

 

 

Figure 4-4: Semantic anchors describe how abstract variables in the HATCL ontology are 
grounded in the variables available in the autonomous system 

Note that semantic anchoring can become very difficult or even impossible depending on the representations 
used. HATCL is based on the symbolic representation paradigm where each element corresponds to one entity. 
Neural Networks, which are widely used in AI applications such as autonomous driving and image 
classification, are based on distributed representations [29]. In these representations, each entity is represented 
by a pattern of activity distributed over many elements. How to map HATCL to distributed representations in 
a neural net remains an open question. 

4.2.5 Software implementation of SAIL 

SAIL is implemented using an open source distributed application framework, called Akka, which is used as 
a software wrapper around the various pieces of code, making it a coherent human-agent system. The SAIL 
components can be programmed in any language, and may run on any type of hardware (e.g. robots, head-
mounted displays, mobile devices, sensors). 
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Figure 4-5 SAIL development environment allowing the HAT engineer to add extra SAI modules 
and configure the system’s set of fixed working agreements and ontologies. 

The figure above shows the Sail development environment. The different SAIL components can be added to 
the tree on the left-hand side of the window. The configuration of these components is done on the right-hand 
side. Other tabs can be used to specify the policies (working agreements), and ontologies that are shared within 
this system. 

5.0 PROTOTYPE OF A HAT APPLICATION WITHIN SAIL  

To demonstrate the application of the techniques discussed in the previous section, we used a case for aerial 
surveillance of a compound as described in Section 2.2.1. The proof of concept implements an initial subset 
of the proposed common HAT functions and shows that the underlying concepts and SAIL architecture 
translate into a viable HAT set-up. The surveillance scenario is recreated as a virtual environment. This 
simulation (implemented in Gazebo [35]) includes a 3D modelled military compound, a variety of potential 
threats in the vicinity of this compound as well as a swarm of UAVs that survey the surrounding area. 
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Figure 5-1 the Gazebo simulation environment, which provides the backbone of the prototype 
but which is typically not visible as such to the base commander. 

Task-related functionality of the UAVs is implemented in TAI modules that cover capabilities such as 
waypoint navigation, path planning, object detection, video streaming, and threat identification. Using its set 
of TAI modules, each UAV is capable of autonomously scanning the surroundings of the military compound 
for suspicious activities. 

To turn the UAV’s into teammates, we added a Social Artificial Intelligence Layer (SAIL). This layer includes 
a set of SAI modules, including a multi-modal user interface, and offers the infrastructure to provide the 
middleware between the task-oriented modules and the human team members. In the proof of concept, we 
have implemented and combined a number of core HAT functions (as discussed in Section 3), namely those 
for shared situational awareness, proactive communication (ProCom), human-aware computing, HAT 
communication, and the work agreement mechanism. 

 

Figure 5-2 An overview of the main SAI modules within the base protection HAT.  

The figure above shows the SAI modules that are related to proactive communication (ProCom). ProCom aims 
to establish a balance between the value of sharing information and the costs of imposing cognitive workload 
on the human team member. The autonomous system (the UAV) performs the task of aerial surveillance. 
Using a semantic anchor, events are published using HATCL and made available to the SAI module relevance 
assessment. This module regards each event as a topic and assesses its relevance to the human team member. 
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For example, topics about the detection of a potential hostile contact are more relevant than topics about a 
friendly civilian contact. Also, when the human team member has explicitly asked for a certain topic, this topic 
has high relevance. The SAI module “user state assessment” builds up a value that indicates the cognitive task 
load of the human team member (how busy he/she is) and the situational awareness (what the human team 
member currently does and does not know). Based on this information, the SAI module interaction selection 
decides whether that information should be communicated to the human team member or not and in which 
way (e.g. using a textual message or using a voice-message). More information on content-based modality 
selection can be found in earlier work [17].  

The combined SAI functionality manifests itself to the human team member in the form of an avatar. The 
avatar is able to maintain a dialogue with the human team member and act as an intuitive interface between 
him/her and the SAI components of the autonomous agents (e.g. UAVs). In addition the avatar acts as an 
intelligent information retrieval system, capable of accessing various information resources within the 
available SAIL modules. The avatar responds to speech, typed chat messages, and touch input from the human 
team member. Its actions can vary from information retrieval, engaging conversational dialogues with the 
UAVs, establishing work agreements with these SAI-plugged agents and displaying (task-related) content tiles 
on one of the available computer screens. 

 

Figure 5-3 The avatar representing the UAV swarm and the dialogue window enabling 
interaction. 

The figure above shows the avatar (the round circle on the right), and the dialogue window which interacts in 
a similar way as Google Allo (https://allo.google.com/). Natural language input can be inputted via speech or 
command buttons, and a history of the conversation is shown using text balloons. Besides replying to the 
human team member’s input via text messages, the system can also open up additional windows to visualise 
information and provide new ways of interaction, such as maps, camera feeds of the robots, etc. Note that this 
can only be done if sufficient screen space is available.  
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Figure 5-4 The demonstration environment of the base protection HAT. When the autonomous 
system is not encountering problems, the base commander is not distracted with any 

information (as on the left hand side). When problems occur, the base commander can drill 
down on every piece of relevant task information. 

The figure above shows the set-up of the demo, consisting of three large information displays, a MS surface 
pro touch interaction device, microphone, and speakers. When the UAVs are functioning normally, the screens 
show as little information as possible, and only the avatar is visible (see the right hand side of the Figure). 
When an important topic arises, such as a suspicious contact, more and more information is exchanged between 
the UAV swarm and the base commander. The right hand side of the figure shows the situation in which the 
individual camera-feeds of the UAVs are shown to the base commander allowing the UAV and base 
commander to make a joint decision on how to classify the object. After the issue is solved, the topic becomes 
irrelevant again which implies that all camera-feeds close, and the interface returns to its calm state again. 

The application described above illustrates a management-by-exception type of HAT. This means that the base 
commander is not bothered with superfluous information when this is not needed. However, upon request, or 
by system initiative, a rich interaction can be set up which drills down to the details of the matter at hand. 

6.0 CONCLUSION 

Human agent teaming is a problem with many faces. This paper is an attempt to combine a human factors, 
engineering, and military perspective on the issue. Our solution is based on the idea of a Social Artificial 
Intelligence Layer (SAIL), which is a framework for the development of HMT-concepts. The starting point of 
SAIL is that a HAT can be developed without changing the internal capabilities of the autonomous system. 
We have argued that these social capabilities are to some extent generic. Examples are functions for situation 
awareness, human awareness, explainable AI, working agreements and tasking. Within SAIL, HAT-modules 
are developed that construct these social capabilities. The modules are reusable in multiple domains.  

We have demonstrated the use of SAIL by building an application for military compound protection using 
surveillance drones. The surveillance drones where simulated using the robot simulation environment Gazebo, 
and SAIL was used to build a teaming layer on top of it. The approach resulted in a system which embraces a 
management by exception type of HAT: no information reaches the human teammember, unless a problem 
arises which requires negotiation.  

We believe that our approach is promising and an important step towards developing and prototyping human 
agent teaming applications in the defence domain. We identify three directions for future work. Firstly, we 
intend to develop more complex types of semantic anchors, and explore which autonomous system 
architectures enable which types of anchors. This allows us to discover the boundaries of HAT applications, 
as only those types of information can be communicated which can actually be anchored in the agent. 
Secondly, we intend to explore validation methods for HAT applications, which also take the long term aspects 
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of teaming into account. Thirdly, we intend to explore combinations of HAT interaction with more immersive 
interaction techniques such as tele-presence.  
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